Topic 3 VECTORS

Contents:

3.1 Vectors in two and three dimensions

3.2 Unit vectors

- **3.3 Dot product**
- **3.4 Cross product**
- **3.5 Equations of Lines and Planes**

SUBTOPICS:

- 3.1.1 Geometric Vectors
- 3.1.2 Vectors in a 2-dimension
- 3.1.3 Vectors in a 3-dimension
- 3.1.4 Properties of Vector
- 3.1.5 Properties of Vector Operations
- 3.1.6 Norm of a Vector
- 3.2.1 Unit Vector in the Direction of v
- 3.2.2 Standard Unit Vector
- 3.3.1 Component Form of the Dot Product
- 3.3.2 Properties of the Dot Product
- 3.4.1 Definition of Cross Product
- 3.4.2 Properties of Cross Product
- 3.4.3 Relationship Involving Cross Product and Dot Product
- 3.4.4 Cross Product and Angle of Vectors
- 3.5.1 Lines in 3-Space
- 3.5.2 Planes in 3-Space

3.1.1 Geometric Vectors

Vectors are usually represented geometrically as **directed line** segments or arrows.

The tail of the arrow is called the **initial point** of the vector, and the tip of the arrow the **terminal point**.

The initial point of a vector \mathbf{v} is A and the terminal point is B, we write $\mathbf{v} = AB$.

3.1.1 Geometric Vectors

Two vectors are regarded as **equal** (or equivalent) if both vectors are of the **same direction** with **equal magnitude**, regardless of the position of the initial points.

The vector of length zero is called the **zero vector** or **null vector** and is denoted by $\mathbf{0} = \langle 0, 0 \rangle$ whose magnitude is zero and whose direction is indeterminate.

3.1.2 Vectors in a 2-dimension

If **v** is a vector in the plane whose initial point is the origin and terminal point is (v_1, v_2) , then the coordinates (v_1, v_2) of the terminal point of **v** are called the **component** of **v** and we write

3.1.3 Vectors in a 3-dimension

There are three planes: *xy-plane*, *xz*-plane and *yz*-plane. These three planes form eight octants; the **first octant** consists of all positive numbers (+x, +y, +z). The remaining seven octants have different combinations of positive and negative numbers: (-x, +y, +z), (-x, -y, +z), (+x, -y, +z), (-x, +y, -z), (-x, -y, -z), (-x, -y, -z) and (+x, -y, +z).

REGION	DESCRIPTION
xy-plane	Consists of all points of the form $(x, y, 0)$
xz-plane	Consists of all points of the form $(x, 0, z)$
yz-plane	Consists of all points of the form $(0, y, z)$
x-axis	Consists of all points of the form $(x, 0, 0)$
y-axis	Consists of all points of the form $(0, y, 0)$
z-axis	Consists of all points of the form $(0, 0, z)$

3.1.3 Vectors in a 3-dimension

If $A(x_1, y_1)$ and $B(x_2, y_2)$ are points in 2D space, then the vector joining initial point A to terminal point B, denoted by \overrightarrow{AB} , has the **component** form

$$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1 \rangle.$$

Similarly, if $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ are points in 3D space, then $\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$

For the special case when initial point A is the **origin**, i.e. either O(0,0) or O(0,0,0), then the resulting vector \overrightarrow{OB} is a special type of vector known as a **position vector**.

Example:

In 2-space the vector from $P_1(1, 3)$ to $P_2(4, -2)$ is

Solution:

$$\overrightarrow{P_1P_2} = \langle 4-1, -2-3 \rangle = \langle 3, -5 \rangle$$

Example:

In 3-space the vector from A(0, -2, 5) to B(3, 4, -1) is

Solution:

$$\overrightarrow{AB} = \langle 3 - 0, 4 - (-2), -1 - 5 \rangle = \langle 3, 6, -6 \rangle$$

3.1.4 Properties of Vector

1. If $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ and $\mathbf{w} = \langle w_1, w_2, w_3 \rangle$ are equivalent, then $v_1 = w_1$, $v_2 = w_2$ and $v_3 = w_3$.

2.
$$\mathbf{v} + \mathbf{w} = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle$$
.

3. $k\mathbf{v} = \langle kv_1, kv_2, kv_3 \rangle$ where *k* is any scalar.

4. If the vector P_1P_2 has initial point $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ terminal point , then the component form of the vector **v** represented by $\overrightarrow{P_1P_2}$ is

$$\langle v_1, v_2, v_3 \rangle = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

3.1.5 Properties of Vector Operations

If **u**, **v**, and **w** are vectors in 2 or 3-space and k and l are scalars, the following relationships hold.

3.1.6 Norm of a Vector

The **length** of a vector \mathbf{v} is often called the **norm** of \mathbf{v} and is denoted by $|\mathbf{v}|$ where

3.1.6 Norm of a Vector

<u>Distance Formula in Two Dimensions with initial point not at origin</u> The distance between the points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ is

$$|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

3.1.6 Norm of a Vector Distance Formula in Three Dimensions with initial point not at origin The distance between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is (x_1, y_1, z_2) $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ $P_2(x_2, y_2, z_2)$ $P_1(x_1, y_1, z_1)$ (x_1, y_2, z_1) $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ (x_2, y_1, z_1) 15

Example:

Given points $P_1(2,-1,-5)$ and $P_2(4,-3,1)$, find the norm of the vector **v** represented by $\overline{P_1P_2}$

Solution:

$$|\mathbf{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} = \sqrt{(4-2)^2 + (-3+1)^2 + (1+5)^2} = \sqrt{44} = 2\sqrt{11}$$

Example:

Given $\mathbf{u} = \langle 3, -2 \rangle$ and $\mathbf{v} = \langle -9, 0, 2 \rangle$, find $|\mathbf{u}|$ and $|\mathbf{v}|$. Solution: $|\mathbf{u}| = \sqrt{3^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}$. $|\mathbf{v}| = \sqrt{(-9)^2 + 0^2 + (2)^2} = \sqrt{81 + 4} = \sqrt{85}$.

3.2.1 Unit Vector in the Direction of v

If ${\bf v}$ is a nonzero vector in the plane, then the unit vector ${\bf u}$ is defined as

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{1}{|\mathbf{v}|} \mathbf{v}$$

and has magnitude (or length) 1 and the same direction as \mathbf{v} .

Example:

Find a unit vector in the direction of $\mathbf{v} = \langle 1,1,2 \rangle$ and verify that the result has length 1.

Solution:

The unit vector in the direction of ${\bf v}$ is

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\langle 1, 1, 2 \rangle}{\sqrt{1^2 + 1^2 + 2^2}} = \frac{1}{\sqrt{6}} \langle 1, 1, 2 \rangle = \left\langle \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right\rangle$$

The vector has length 1, because

$$\sqrt{\left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{2}{\sqrt{6}}\right)^2} = \sqrt{\frac{1}{6} + \frac{1}{6} + \frac{4}{6}} = 1$$

Example:

Determine whether the following vectors are unit vectors.

i)
$$\mathbf{u} = \left\langle \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right\rangle$$
; *ii*) $\mathbf{v} = \langle 2, 1, 0 \rangle$.

Solution:

i)
$$|\mathbf{u}| = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(-\frac{1}{\sqrt{2}}\right)^2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1 \dots \mathbf{u}$$
 is a unit vector.
ii) $|\mathbf{v}| = \sqrt{2^2 + 1^2 + 0^2} = \sqrt{4 + 1} = \sqrt{5} \dots \mathbf{v}$ is not a unit vector.

3.2.2 Standard Unit Vector

The unit vectors $\mathbf{i} = \langle 1,0,0 \rangle$, $\mathbf{j} = \langle 0,1,0 \rangle$ and $\mathbf{k} = \langle 0,0,1 \rangle$ are called the **standard unit vectors** in the plane and we can write

 $\mathbf{v} = \langle v_1, v_2, v_3 \rangle = v_1 \langle 1, 0, 0 \rangle + v_2 \langle 0, 1, 0 \rangle + v_3 \langle 0, 0, 1 \rangle = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$

3.3 DOT PRODUCT/ SCALAR PRODUCT

3.3.1 Component Form of the Dot Product

Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ be two vectors in 2-space, then their **dot product** are as follows:

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$$

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be two vectors in 3-space, then their **dot product** are as follows:

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$

3.3 DOT PRODUCT/ SCALAR PRODUCT

3.3.1 Component Form of the Dot Product

If θ (where $0 \le \theta \le \pi$) is the angle between **u** and **v**, then the **dot product** can also be defined as

 $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos\theta$

3.3 DOT PRODUCT/ SCALAR PRODUCT

3.3.1 Component Form of the Dot Product

Interpreting the sign of the dot product $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos\theta$

3.3 DOT PRODUCT

Example:

Consider the vector $\mathbf{u} = \langle 2, -1, 1 \rangle$ and $\mathbf{v} = \langle 1, 1, 2 \rangle$, find their dot product and determine the angle between \mathbf{u} and \mathbf{v} .

Solution:

$$u ⋅ v = u1v1 + u2v2 + u3v3 = (2)(1) + (-1)(1) + (1)(2) = 3$$

$$|u| = \sqrt{2^{2} + (-1)^{2} + 1^{2}} = \sqrt{6}$$

$$|v| = \sqrt{1^{2} + 1^{2} + 2^{2}} = \sqrt{6}$$

$$u ⋅ v = |u| |v| cosθ$$

$$\Rightarrow cosθ = \frac{u ⋅ v}{|u| |v|} = \frac{3}{\sqrt{6}\sqrt{6}} = \frac{1}{2}$$

$$∴ θ = 60^{\circ}$$

3.3 Dot Product

Example:

Find the dot product of $\mathbf{u} = \langle 0, 0, 1 \rangle$ and $\mathbf{v} = \langle 0, 2, 2 \rangle$ where $\theta = 45^{\circ}$

Solution:

$$\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos\theta = \left(\sqrt{0^2 + 0^2 + 1^2}\right) \left(\sqrt{0^2 + 2^2 + 2^2}\right) \left(\frac{1}{\sqrt{2}}\right) = \sqrt{4} = 2$$

3.3 Dot Product

Example: Show that $\mathbf{u} = \langle 2, 2, -1 \rangle$ and $\mathbf{v} = \langle 5, -4, 2 \rangle$ are perpendicular

Solution:

If **u** and **v** are perpendicular, then $\mathbf{u} \cdot \mathbf{v} = 0$

 $\mathbf{u} \cdot \mathbf{v} = 2(5) + 2(-4) + (-1)(2) = 0$

3.3 DOT PRODUCT

A wagon is pulled horizontally by exerting a constant force of 10 lb on the handle at an angle of 60° with the horizontal. How much work is done in moving the wagon 50 ft?

Solution:

With $\|\mathbf{F}\| = 10$, $\theta = 60^{\circ}$, and $\|\overrightarrow{PQ}\| = 50$, it follows that the work done is $W = (\|\mathbf{F}\|\cos\theta)\|\overrightarrow{PQ}\| = 10 \cdot \frac{1}{2} \cdot 50 = 250 \text{ ft} \cdot \text{lb}$ F=101b 60° 50ft

3.3 DOT PRODUCT

3.3.2 Properties of the Dot Product

Properties of the Dot Product

If \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in 2- or 3-space and k is a scalar, then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$
- 3. $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (k\mathbf{v})$
- 4. $\mathbf{v} \cdot \mathbf{v} > 0$ if $\mathbf{v} \neq \mathbf{0}$, and $\mathbf{v} \cdot \mathbf{v} = 0$ if $\mathbf{v} = \mathbf{0}$
- 5. $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$
- 6. Two nonzero vectors **u** and **v** are **orthogonal/perpendicular** if and only if $\mathbf{u} \cdot \mathbf{v} = 0$, we write $\mathbf{u} \perp \mathbf{v}$.

3.4 CROSS PRODUCT/ VECTOR PRODUCT

Some of the concept that we will develop in this section requires basic ideas about determinants.

A **2 x 2** determinant is $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$ A **3 x 3** determinant is $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$ a×b b×a $=-a \times b$

30

3.4.1 Definition of Cross Product

If $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ be two vectors in 3-space, then their **cross product u x v** is the vector defined by:

u x **v** =
$$\langle u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1 \rangle$$

or in the determinant notation,

$$\mathbf{u} \ge \mathbf{v} = \left\langle \left(\begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \right) \right\rangle$$

The cross product can be calculated as follows:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

Example: If $\mathbf{u} = \langle 1, 2, -2 \rangle$ and $\mathbf{v} = \langle 3, 0, 1 \rangle$, find the cross product of \mathbf{u} and \mathbf{v} .

Solution:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -2 \\ 3 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \mathbf{k} = 2\mathbf{i} - 7\mathbf{j} - 6\mathbf{k}$$

3.4.2 Properties of Cross Product

If u, v and w are any vectors in 3-space and k is a scalar, then: 1.u x v = -(v x u)2.u x (v + w) = (u x v) + (u x w) 3.(u + v) x w = (u x w) + (v x w) 4.k(u x v) = k(u) x v = u x (kv) = (u x v) k 5.u x 0 = 0 x u = 0 6.u x u = 0 7.u and v are parallel if and only if u x v= 0

Remark:

Cross product is neither commutative nor associative, that is,

 $\mathbf{a} \times \mathbf{b} \neq \mathbf{b} \times \mathbf{a},$ $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \neq (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}.$

Example:

Find a vector perpendicular to the plane that contains A(1,-1,0), B(2,1,-1) and C(-1,1,2).

Solution:

We begin by forming the vectors \overrightarrow{AB} and \overrightarrow{AC} which lie on the plane, i.e.

$$\overrightarrow{AB} = (2-1)\hat{\mathbf{i}} + (1+1)\hat{\mathbf{j}} + (-1-0)\hat{\mathbf{k}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$$
$$\overrightarrow{AC} = (-1-1)\hat{\mathbf{i}} + (1+1)\hat{\mathbf{j}} + (2-0)\hat{\mathbf{k}} = -2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}}.$$

Taking their cross product yields

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 1 & 2 & -1 \\ -2 & 2 & 2 \end{vmatrix} = \begin{vmatrix} 2 & -1 \\ 2 & 2 \end{vmatrix} \hat{\mathbf{i}} - \begin{vmatrix} 1 & -1 \\ -2 & 2 \end{vmatrix} \hat{\mathbf{j}} + \begin{vmatrix} 1 & 2 \\ -2 & 2 \end{vmatrix} \hat{\mathbf{k}}$$
$$= 6\hat{\mathbf{i}} + 6\hat{\mathbf{k}}.$$

The vector $6\hat{\mathbf{i}} + 6\hat{\mathbf{k}}$ is perpendicular to both \overrightarrow{AB} and \overrightarrow{AC} , which means that it is also perpendicular to the plane on which they lie.

Example:

Show that
$$\mathbf{a} = \langle 2, 9, 3 \rangle$$
 and $\mathbf{b} = \langle -1, -\frac{9}{2}, -\frac{3}{2} \rangle$ are parallel.

Solution:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 9 & 3 \\ -1 & -\frac{9}{2} & -\frac{3}{2} \end{vmatrix}$$

$$= \left[(9) \left(-\frac{3}{2} \right) - \left(-\frac{9}{2} \right) (3) \right] \hat{\mathbf{i}} - \left[2 \left(-\frac{3}{2} \right) - (-1)(3) \right] \hat{\mathbf{j}} + \left[2 \left(-\frac{9}{2} \right) - (-1)(9) \right] \hat{\mathbf{k}}$$

$$= 0 \hat{\mathbf{i}} + 0 \hat{\mathbf{j}} + 0 \hat{\mathbf{k}} = \mathbf{0}$$

 \therefore **a** and **b** are parallel.

3.4.3 Relationship Involving Cross Product and Dot Product

If \mathbf{u} , \mathbf{v} and \mathbf{w} are any vectors in 3-space, then: 1. $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ ($\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u}) 2. $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$ ($\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{v}) 3. $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ 4. ($\mathbf{u} \times \mathbf{v}$) $\mathbf{x} \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}$

3.4.4 Cross Product and Angle of Vectors

If **u** and **v** are vectors and θ is the angle between **u** and **v**, then

 $|\mathbf{u} \mathbf{x} \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$

where $0 \le \theta \le \pi$

SUMMARY:

u

Dot Product

- the product of two vectors is a scalar
- defined in 2D and 3D space
- $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$
- $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos\theta$
- if $\mathbf{u} \cdot \mathbf{v} = 0$, then \mathbf{u} and \mathbf{v} are **perpendicular**

Cross Product

- the product of two vectors is a **vector**
- defined only in 3D space
- **u** x **v** = $\langle u_2 v_3 u_3 v_2, u_3 v_1 u_1 v_3, u_1 v_2 u_2 v_1 \rangle$.
- $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$. (area of the parallelogram)
- If **u**×**v**=0, then **u** and **v** are parallel

3.5.1 Lines in 3-Dimensional

If *L* is a line in 3D-space through the **point** $P_0(x_0, y_0, z_0)$ and **parallel** to the nonzero **vector** $\mathbf{v} = \langle a, b, c \rangle$, then this line *L* is represented by the **vector equation**

based on the vector addition using Triangle Law $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}$

3.5.1 Lines in 3-Dimensional

Parametric Equations of a Line in Space

It can be written in scalar equations,

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

which are called **parametric equations**

Symmetric Equations of a Line in Space

If a vector $\mathbf{v} = \langle a, b, c \rangle$ is used to describe the direction of a line *L*, then the numbers *a*, *b*, and *c* are called **direction numbers** of *L*.

If the direction numbers a, b and c are all nonzero, then we can eliminate the parameter t to obtain the **symmetric equations** of a line.

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

41

Example:

Find the parametric equations and symmetric equations of the line that pass through the points (1,2,-3) and parallel to the vector $\mathbf{v} = \langle 4,5,-7 \rangle$ Solution:

The parametric equations are : x = 1 + 4t y = 2 + 5t z = -3 - 7tThe symmetric equations are : $\frac{x-1}{4} = \frac{y-2}{5} = \frac{z+3}{-7}$

Example:

(a) Find parametric equations and symmetric equations of the line that passes through the points A(2, 4, -3) and B(3, -1, 1).

(b) At what point does this line intersect the *xy*-plane?

Example:

(a) Find parametric equations and symmetric equations of the line that passes through the points A(2, 4, -3) and B(3, -1, 1).

Solution:

(a) We are not explicitly given a vector parallel to the line, but observe that the vector \mathbf{v} with representation \overrightarrow{AB} is parallel to the line and

$$\mathbf{v} = \langle 3 - 2, -1 - 4, 1 - (-3) \rangle = \langle 1, -5, 4 \rangle$$

Thus direction numbers are a = 1, b = -5, and c = 4. Taking the point (2, 4, -3) as P_0 , we see that parametric equations (2) are

$$x = 2 + t$$
 $y = 4 - 5t$ $z = -3 + 4t$

and symmetric equations (3) are

$$\frac{x-2}{1} = \frac{y-4}{-5} = \frac{z+3}{4}$$

44

Example:

(b) At what point does this line intersect the *xy*-plane?

Solution:

(b) The line intersects the *xy*-plane when z = 0, so we put z = 0 in the symmetric equations and obtain

$$\frac{x-2}{1} = \frac{y-4}{-5} = \frac{3}{4}$$

This gives $x = \frac{11}{4}$ and $y = \frac{1}{4}$, so the line intersects the *xy*-plane at the point $(\frac{11}{4}, \frac{1}{4}, 0)$.

3.5.2 Planes in 3-Dimensional

The plane containing the **point** $P_0(x_0, y_0, z_0)$ and having a **normal vector** $\mathbf{n} = \langle a, b, c \rangle$ is **perpendicular /orthogonal** to every vector in the given plane, in particular to $\mathbf{r} - \mathbf{r_0}$, so by the dot product of orthogonal vectors, we have

which can be written as $\mathbf{n.r} = \mathbf{n.r_0}$ is called the **vector equation** of the plane.

3.5.2 Planes in 3-Dimensional

By writing $\mathbf{n} = \langle a, b, c \rangle$, $\mathbf{r} = \langle x, y, z \rangle$ and $\mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle$ in component form, we have

$$\langle a,b,c\rangle$$
. $\langle x-x_0, y-y_0, z-z_0\rangle = 0$

To obtain for the scalar equation, we can expand the dot product becomes

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Theorem:

If *a*, *b*, *c* and *d* are constants and *a*, *b* and *c* are not all zero, then the equation of the plane can be rewritten as ax+by+cz+d=0 having the normal vector $\mathbf{n} = \langle a,b,c \rangle$.

Example:

Find an equation of the plane passing through the point (3, -1, 7) and perpendicular to the vector $n = \langle 4, 2, -5 \rangle$

Solution:

 $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ 4(x - 3) + 2(y + 1) - 5(z - 7) = 04x + 2y - 5z + 25 = 0

Example

Find the equation of the plane passing through the points $P_1(1,2,-1)$, $P_2(2,3,1)$ and $P_3(3,-1,2)$.

Solution:

Since $P_1(1,2,-1)$, $P_2(2,3,1)$ and $P_3(3,-1,2)$ lies in the plane, the vectors $\overline{P_1P_2} = \langle 1,1,2 \rangle$

and $\overline{P_1P_3} = \langle 2, -3, 3 \rangle$ are parallel to the plane.

Therefore $\overrightarrow{P_1P_2} \ge \overrightarrow{P_1P_3} = \langle 9,1,-5 \rangle$ is normal to the plane.

 $(:: \overline{P_1P_2} \times \overline{P_1P_3} \text{ is perpendicular to both } \overline{P_1P_2} \text{ and } \overline{P_1P_3})$

A point-normal form for the equation of a plane is (*P*₁ lies in the plane) $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$ $\Rightarrow 9(x-1) + 1(y-2) - 5(z+1) = 0 \Rightarrow 9x + y - 5z - 16 = 0$

The Intersection of a Line and a Plane

Types of Intersection:

1.) One Point of Intersection:

The line crosses the plane at a single point.

2.) No Point of Intersection:

The line and plane are parallel and distinct.

3.) Infinite Points of Intersection:

The line lies in the plane.

REFERENCES

- Stewart, J., Redlin, L., & Watson, S. (2012). Precalculus: Mathematics for Calculus (6th ed.) Brooks/Cole, Cengage Learning.
- Howard Anton, Irl C. Bivens, Stephen Davis (2012). Calculus. (10th ed.) John Wiley & Sons, Inc.