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3.1 VECTORS IN TWO AND THREE DIMENSIONS

] 3.1.1 Geometric Vectors

Physical Quantities

I Scalar Vector
' Has magnitude only Has Iﬁ?liréﬁgge and

For example: speed, length, volume, |
mass, energy and temperature are
scalars

For example: velocity, acceleration,

force and momentum are vectors.
|




3.1 VECTORS IN TWO AND THREE DIMENSIONS

‘ 3.1.1 Geometric Vectors I

Vectors are usually represented geometrically as directed line segments or arrows.

The tail of the arrow is called the initial point of the vector, and the tip of the
arrow the terminal point.

|E| or | v |

The initial point of a vector v is A and the terminal point is B, we write V = AB :




3.1 VECTORS IN TWO AND THREE DIMENSIONS

] 3.1.1 Geometric Vectors

Two vectors are regarded as equal (or equivalent) if both vectors are of the same
direction with equal magnitude, regardless of the position of the
Initial points.

The vector of length zero is called the zero vector or null vector and is denoted by
0= <0,0> whose magnitude is zero and whose direction is indeterminate.




3.1 VECTORS IN TWO AND THREE DIMENSIONS

‘ 3.1.2 Vectors 1n a 2-dimension

If v 1s a vector in the plane whose initial point is the origin and terminal point is (v,,
Us), then the coordinates (v, vy) of the terminal point of v are called the component

of v and we write




3.1 VECTORS IN TWO AND THREE DIMENSIONS

‘ 3.1.3 Vectors 1in a 3-dimension

There are three planes: xy-plane, xz-plane and yz-plane. These three planes form
eight octants; the first octant consists of all positive numbers (+x, +y,+z). The
remaining seven octants have different combinations of positive and negative
numbers: (-x, +y, +2), (-x, -y, +2), (+x, -y, +z), (+x, ty, -2), (-X, ty, -z), (-X, -y, -z) and

(+X7 -y, +Z)'

xy-plane

yz-plane

xz-plane

Y=

REGION DESCRIPTION
xy-plane Consists of all points of the form (x, y, 0)
xz-plane Consists of all points of the form (x, 0, z)
yz-plane Consists of all points of the form (0, y, z)
X-axis Consists of all points of the form (x, 0, ()
y-axis Consists of all points of the form (0, y, 0)
Z-axis Consists of all points of the form (0, 0, z)




3.1 VECTORS IN TWO AND THREE DIMENSIONS

‘ 3.1.3 Vectors 1n a 3-dimension

) z Az
CI } P4




3.1 VECTORS IN TWO AND THREE DIMENSIONS

If A(x,,v,) and B(x,,y,) are points in 2D space, then the vector joining

initial point 4 to terminal point B, denoted by AB . has the component
form

E=(IE — X1, V2 —_F])+

Similarly, if A(x,,y,,z,) and B(x;,y,,z, ) are points in 3D space, then

AB=(x; = X, y3 = V1.2, — 7)
For the special case when initial point A4 is the origin, i.e. either 0(0.0)

or 0(0,0,0), then the resulting vector OB is a special type of vector
known as a position vector.



3.1 VECTORS IN TWO AND THREE DIMENSIONS

Example:

In 2-space the vector from P (1, 3) to P>(4, —=2) is

Solution:
i
PP, ={4-1,-2-73)={(3,-5)

Example:

In 3-space the vector from A(0, —2,5) to B(3,4, —1) is

Solution:

AB=(3—0.4—(=2),—1 —5) = (3.6, —6)



3.1 VECTORS IN TWO AND THREE DIMENSIONSS3

_ 3.1.4 Properties of Vector

1. If V=(V1,V2,Vs) andW=(W,W,,Ws) are equivalent, then V=W, V=W, and vg=w;,.

9. VA+W =(Vy +Wp,V, + Wy, Vs + W) |

3. kv= <kV1’ kv,, kv3> where k 1s any scalar.

—_—

4. Tf the vector MiP2 has initial point PL(X; ¥1:Z1) and P,(X,,Y,,Z,) terminal point
, then the component form of the vector v represented by P P’ 1S
172

<V1’V2’V3>:<X2 — X Y, = Y, 4 _21>




3.1 VECTORS IN TWO AND THREE DIMENSIONS

_ 3.1.5 Properties of Vector Operations

If u, v, and w are vectors in 2 or 3-space and %k and [/ are scalars, the following
relationships hold.

lu+tv=v+u
2u+tv)tw=u+(v+w)
3.u+0=0+u=u
4u+(-u)=0

5.k(la) = (R)u
6.k(u+v)=Fku+ kv
7.(k+Du=Fku+lu
8.lu=u




3.1 VECTORS IN TWO AND THREE DIMENSIONS

‘ 3.1.6 Norm of a Vector

The length of a vector v is often called the norm of v and is denoted by M where

M = \/V12 +V§ in 2-space| and

|V| — \/Vlz +V22 +V§ 1n 3-space

A

» P2(X2,y2,72)

P1(x1,y1,71) >

4

X




3.1 VECTORS IN TWO AND THREE DIMENSIONS

‘ 3.1.6 Norm of a Vector

Distance Formula in Two Dimensions with initial point not at origin
The distance between the points Pl(Xl, yl) and P(X,¥2) is

‘P1P2‘ = \/(Xz - X1)2 +(Y2 - Y1)2

AY

5 Pl )
Py(x, 1) bib

L ]




3.1 VECTORS IN TWO AND THREE DIMENSIONS

‘ 3.1.6 Norm of a Vector

Distance Formula in Three Dimensions with initial point not at origin

The distance between the points Pl(Xl, Yi: 44 ) and P, (Xz, Yo, 22)

‘P1P2‘ = \/(Xz - X1)2 "‘(YZ - 3’1)2 +(22 - Zl)2

/1
z

N

(-\',,_,\’,,:_,)

1S

P2(X5¥225)

Pix,y,z;) 1

(X2Y121)

"""" (XpY221)




3.1 VECTORS IN TWO AND THREE DIMENSIONS

Example: B
Given points p, (2,—1,-5) and p,(4,-31) , find the norm of the vector v represented by PP,

Solution:

V= V2 +v2 112 = [(4-2)2 +(-3+1)2 + (1+5)2 =44 =211



3.1 VECTORS IN TWO AND THREE DIMENSIONS

Example:

Given w=<3,-2> and v =<— 9,0, 2), find |u| and ‘v|
Solution:

u| = J32 \/9+ =13
v|= \/ 2402 +(2)" =/81+4 =485,




3.2 UNIT VECTORS

‘ 3.2.1 Unit Vector in the Direction of v

If v is a nonzero vector in the plane, then the unit vector u is defined as

and has magnitude (or length) 1 and the same direction as v.




3.2 UNIT VECTORS

Example:
Find a unit vector in the direction of v=(112) and verify that the result has length

1.

Solution:
The unit vector in the direction of v is

v (11,2) 1 1

1 2
“:M:m%“"”:%w@

The vector has length 1, because

BEREaNcrs
V6) \V6) |6 6 6 6




3.2 UNIT VECTORS

Example:

Determine whether the following vectors are unit vectors.
1 1
jpu=(—=,———); ii) v=(2,1,0).
) < NG ﬁ> ) v=(2,1,0)
Solution:

2 2
1) ‘u\z 1 + _ L = l+1=1..°.uisaunitvector.
V2 V2 2 2

1) \V|=\/22 +12+0% =/4+1=4/5. . v is not a unit vector.




3.2 UNIT VECTORS

- 3.2.2 Standard Unit Vector

The unit vectors i =(10,0) j=(010) and k=(0,01) are called the standard unit
vectors in the plane and we can write

V=(Vv,,V,,Vy)=V,(1,0,0)+Vv,(0,1,0) +V4(0,01) = v,i +V, j+ v,k

For example, (3-21)=3i-2j+k =




3.3 DOT PRODUCT/ SCALAR PRODUCT

~3.3.1 Component Form of the Dot Product

Let u=(U,U,) and v= (v;,V,) be two vectors in 2-space, then their dot product
are as follows:

Let U= <U1, U,, U3> and V= <V1,V2,V3> be two vectors in 3-space, then their dot
product are as follows:

U-V=u\V, +U,V, +U,V,




3.3 DOT PRODUCT/ SCALAR PRODUCT

~3.3.1 Component Form of the Dot Product

If & (where O < @ < ) 1s the angle between u and v, then the dot product can
also be defined as

u-v =|u||v|cosé

/

74

>
v

u-v=ul|vcos &




3.3 DOT PRODUCT/ SCALAR PRODUCT

~3.3.1 Component Form of the Dot Product

Interpreting the sign of the dot product — U-V=|u||v|cosé

v
f
/ :> .

wev >0 v <0

ey




3.3 DOT PRODUCT

Example:
Consider the vector u=(2-11) and v=(112), find their dot product and determine

the angle between u and v.

Solution:
u-v=uV, +U,Vv, +Usvs = (2)(+ (-1)@) + 1)(2) =3

uj=+y22+(-1)%+12 =6
V[ =v1?+12+2% = /6

u-v=|u||v|cosé

u-v 3

= C0SH = = =
ullv] 66

-.0=60’

1
2



3.3 DOT PRODUCT

Example:
Find the dot product of U=(0,01) and V=(0.2,2) where &=45"

Solution:

u-v=|ul|v|cosd = (\/o2 +0% +1° )(\/02 +2°+2° )(%j =J4=2




3.3 DOT PRODUCT

Example:
Show that U= <2,2,—1> andV = <5,—4,2> are perpendicular

Solution:
If u and v are perpendicular, then U-V =0

U-v=2(5)+2(-4) + (=1)(2) =0



3.3 DOT PRODUCT

A wagon 1s pulled horizontally by exerting a constant force of 10 Ib on the handle at an
angle of 60° with the horizontal. How much work is done in moving the wagon 50 ft?

Solution:

With |F|| = 10,6 = 60°, and IIP_Q>|| = 50, it follows that the work done is

—> ] ]
W = (||F||cos@)||PQ| = 10 - > - 50 = 250 ft-1b




3.3 DOT PRODUCT

_ 3.3.2 Properties of the Dot Product

Properties of the Dot Product

If u, v and w are vectors 1n 2- or 3-space and k£ 1s a scalar, then

u-v=v-u
u-(viw)=u-v+u-w

Ck(u-v)y=(ku)-v=u-(kv)

v-v>0ifv#0,andv-v=0i1fv=0

vov=|v’

. Two nonzero vectors u and v are orthogonal/perpendicular if and only
fu-v=0, we write ulv.

I N




3.4 CROSS ProDuCT/ VECTOR PRODUCT

Some of the concept that we will develop in this section requires basic ideas about
determinants.

. |a
A 2 x 2 determinant is bl ‘|l =ab, —a,b,
1 2
a, a, a
. - ' ’ ’ b2 b3 bl b3 bl b2
A 3 x3determinantisfb, b, b,l=4a, —-a, +a,
CZ C3 Cl C3 Cl C2
Cl CZ C3
axb
R b
n
6
bxa a
=-aXb




3.4 CROSS PRODUCT

‘ 3.4.1 Definition of Cross Product

If u= <U1, u,, U3> and V= <V1,V2,V3> be two vectors in 3-space, then their cross product
u x v 1s the vector defined by:

u XV:<U2V3 —U3V2,U3V1 _u1V31u1V2 _u2vl>

)

or 1n the determinant notation,

The cross product can be calculated as follows:

U, Uzl jUp Ugljup U,

ViV,

Vo V31 Vi V3




3.4 CROSS PRODUCT

Example:
If u=(12,-2) and V= (30,1), find the cross product of u and v.

Solution:

2 .
‘k=2l-7j-6k
0




3.4 CROSS PRODUCT

 3.4.2 Properties of Cross Product

If u, v and w are any vectors in 3-space and £k 1s a scalar, then:
luxv=-(vxu)

2Zux(v+w)=(uxv)+ (uxw)

.utv)xw =(uxw)+ (VX w)
4dk(uxv)=k(w)xv=ux(kv)=(Uxv)k

5.ux0=0xu=0

6uxu=0

7.u and v are parallel if and only if u x v=0

Remark:
Cross product is neither commutative nor associative, that is,
axb#bxa,

ax(bxc)#(axb)xe.




3.4 CROSS PRODUCT

Example:

Find a vector perpendicular to the plane that contains A(1,—1,0), B(2,1,—1) and C(-1,1,2).

ABxAC
N

>0a,12)

plane A(1,1,0)




3.4 CROSS PRODUCT

Solution:

We begin by forming the vectors AB and AC which lie on the plane, 1.e.
AB=2-Di+(1+Dj+(-1-0)k =i+2j—k

AC =(-1-Di+(1+1)j+(2-0)k = —2i +2j+2k.

Taking their cross product yields

i j K
ABxAC=1 2 —1=‘
~2 2 2
= 6i + 6K.

2 -1
2 2

-,
i

The vector 6i + 6k is perpendicular to both AB and AC , which means
that it is also perpendicular to the plane on which they lie.



3.4 CROSS PRODUCT

Example:

Show that a= <2 9, 3 and b = < l,— y /> are parallel.

Solution:
i j Kk
axb=(2 9 3
o 22 3
_ 2
~[of- 3)- %)k -bE 34)- b+ %)-cnok
=0i+0j+0k=0

-.a and b are parallel.



3.4 CROSS PRODUCT

3.4.3 Relationship Involving Cross Product

. and Dot Product

If w, v and w are any vectors in 3-space . then:
lLu-(uxv)=0 (u x v 1s orthogonal to u)

2. v-(uxv)=0 (u x v is orthogonal to v)
J.ux(vw)=u-w)v-(u-v)w
4. (uxv)xw=u-w)v-(v-w)u




3.4 CROSS PRODUCT

~ 3.4.4 Cross Product and Angle of Vectors

If u and v are vectors and g 1is the angle between u and v, then

lux v|=|ul|v|sin& where 0<@<r




SUMMARY:

* the product of two vectors 1s a
* defined 1n 2D and 3D space

,then u and v are

* the product of two vectors 1s a
* defined only in 3D space

. (area of the parallelogram)
- If ,then u and v are




3.5 KQUATIONS OF LINES AND PLANES

‘ 3.5.1 Lines 1n 3-Dimensional

If L is a line in 3D-space through the point Py(x,, vy, 2, and parallel to the nonzero
vector V= <a, b, C>, then this line L is represented by the vector equation

e U .
| r ii_«ro +t%ﬁ7here t 1s scalar

based on the vector addition using Triangle Law r=r,+a

If r= <X, Y, Z> , the vector equation becomes ZA

Py(x0, ¥o» Zo)

(X, y,2) =(x, +1a, y, +th, 2, +1c)




3.5 KQUATIONS OF LINES AND PLANES

‘ 3.5.1 Lines 1n 3-Dimensional

Parametric Equations of a Line in Space
It can be written in scalar equations,

X =X, +at y =Y, +Dbt Z=17,+Ct

which are called parametric equations

Syvmmetric Equations of a Line in Space

If a vector v= <a, b, C> 1s used to describe the direction of a line L, then the numbers
a, b, and c are called direction numbers of L.

If the direction numbers a, b and ¢ are all nonzero, then we can eliminate the
parameter ¢ to obtain the symmetric equations of a line.

X=X _ Y=Y _2-1%

a b C




3.5 KQUATIONS OF LINES AND PLANES

Example:

Find the parametric equations and symmetric equations of the line that pass
through the points (1,2,-3) and parallel to the vector V = <4,5,—7>

Solution:

The parametric equations are: X=1+4t y=2+5t z=-3-7t

The symmetric equationsare: x_-1 y—2 z+3

4 5  —7




3.5 KQUATIONS OF LINES AND PLANES

Example:

(a) Find parametric equations and symmetric equations of the line that passes
through the points A(2, 4, —3) and B(3, —1, 1).
(b) At what point does this line intersect the xy-plane?




3.5 KQUATIONS OF LINES AND PLANES

Example:

(a) Find parametric equations and symmetric equations of the line that passes
through the points A(2, 4, —3) and B(3, —1, 1).

Solution:

(a) We are not explicitly given a vector parallel to the line, but observe that the
vector v with representation AB is parallel to the line and

v=(3—-2,—1—-4,1—(-3)) =(1,-54)

Thus direction numbers are @ = 1, b = —5, and ¢ = 4. Taking the point (2, 4, —3)
as Py, we see that parametric equations (2) are

x=2+1 y=4 — 5t z=—3+ 4«
and symmetric equations (3) are

x—2 y—4 z+3

1 =5 R



3.5 KQUATIONS OF LINES AND PLANES

Example:

(b) At what point does this line intersect the xy-plane?

Solution:

(b) The line intersects the xy-plane when z = 0, so we put z = 0 in the symmetric
equations and obtain

This gives x = 1 and y = 1, so the line intersects the xy-plane at the point (%, ﬁ, O).



3.5 KQUATIONS OF LINES AND PLANES

‘ 3.5.2 Planes 1n 3-Dimensional

The plane containing the point P, (x,y,2, and having a normal vector N = <a, b, C>
1s perpendicular /orthogonal to every vector in the given plane, in particular to
r—r, , so by the dot product of orthogonal vectors, we have

which can be written as N.r =n.ry
1s called the vector equation of the plane.




3.5 KQUATIONS OF LINES AND PLANES

‘ 3.5.2 Planes 1n 3-Dimensional

By writing N=(a,b,c) , r=(x,y,z) and ry={(Xo, Yo, Z) in component form, we have

(a,b,c)(X—Xo,Y—Y0:2—25)=0

To obtain for the scalar equation, we can expand the dot product becomes

a(x—X,) +b(y —yy)+c(z-24)=0

Theorem:

If a, b, c and d are constants and a, b and ¢ are not all zero, then the equation of the

plane can be rewritten as ax+by+cz+d=0 having the normal vector n=(a,b,c).




3.5 KQUATIONS OF LINES AND PLANES

Example:
Find an equation of the plane passing through the point (3, -1, 7) and perpendicular
to the vector N =(4,2,-5)

Solution:

a(x—Xq) +b(y—yo)+c(z—-2¢) =0
4(x-3)+2(y+1)-5(z-7)=0
4x+2y—-52+25=0



3.5 KQUATIONS OF LINES AND PLANES

Example

Find the equation of the plane passing through the points Pi(1,2,-1), P2(2,3,1)
and Ps(3,-1,2).

Solution:

Since P1(1,2,-1), P2(2,3,1) and Ps(3,-1,2) lies in the plane, the vectors ?P; =(11,2)

and PP, = (2,-3.3) are parallel to the plane.
Therefore PP, x P,P, = (9.1,-5) is normal to the plane.
(*+ P,P, x PP, is perpendicular to both P,P, and P,P,)

A point-normal form for the equation of a plane is (P lies in the plane)
a(x —x,) +b(y - Vo) te(z—25)=0
= 9(x—1)+1(y-2)-5(z+1)=0 = 9x + y— 5z -16=0



3.5 KQUATIONS OF LINES AND PLANES

The Intersection of a Line and a Plane

Types of Intersection:

1.) One Peoint of intersection:

// The line crosses the plane ata
single point.

2.) No Point of Intersection:

The line and plane are parallel
and distinct.

3.) Infinite Points of Inlersection:

/ / The line lies in the plane.




3.5 KQUATIONS OF LINES AND PLANES

p
p Gy

"3
T

intersecting planes parallel planes
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